Controlling and Monitoring Gas Pressures and Flows

Scott Laplante
Director of Product & Sales Training
Mulcare Pipeline Solutions

Class Topics

- Valves and their operating characteristics.
- Awareness of valve locations.
- Regulators and their operating principles.
- Over pressure protection devices and their settings.
- Flow control vs. pressure control.
- Gas heating principles.
- Remote monitoring and control of gas systems.
- Abnormal Operating Conditions (AOCs).

Gas Distribution System

Typical Natural Gas Distribution System

Valves

- A valve controls the flow of gas or liquid through a pipe.
- Different types of valves are used in different applications.
- Valves are classified as full port or restricted port.
- Valves are categorized for maintenance as critical and nonemergency.
- Critical valves must be checked for access and operation once a calendar year not to exceed 15 months (Department of Transportation mandated).
- Valve failure can result in leaks or loss of system control.

Valves

- Valves are usually made of Steel, Cast Iron, or plastic.
- Most steel or cast iron valves require lubrication.
- Plastic valves need no lubrication, but must be checked for proper operation.
- Almost all valves have similar parts, with minor variations.

Plug Valves

- Plug valves are typically a quarter turn valve.
- Restricted port valve.
- Uses a cylindrical or tapered plug to control flow. Plug turns inside the valve to allow more or less flow straight through the valve.
- Gear operated plugs valves require multiple turns to open or close.

Ball Valves

- Ball Valves are a full port valve.
- Quarter turn to open or close.
 May be gear operated, gear operated valves require multiple turns to achieve full travel.
- Very similar to plug valves, except the ball is round rather than cylindrical.
- Some ball valves are made of plastic.

Butterfly Valves

- Quarter turn valves that have a disk that turns inside the body of the valve to control flow.
- Restricted port valve.
- Similar to gate valves, except that, in a butterfly valve, the disk turns rather than raising or lowering.
- Flow goes straight through the valve.

Globe Valves

- Multi-turn valves that operate by raising and lowering a horizontal disc off or onto a seat below.
- Restricted port valve.
- Gas flow changes direction as it passes through the valve.

Gate Valves

- Multi-turn valves that operates by placing a vertical metal disc, called a gate, across the opening of a pipe with valve seats on both sides.
- Full port valve.
- Gate is raised to allow flow or lowered to stop flow.
- Gas flows straight through the valve.

Wedge Valves

- Multi-turn valve that uses a wedge or tapered plug to control flow.
- Full port valve.
- The wedge is raised or lowered onto or off of the seat, similar to a gate valve.
- Gas flow goes straight through the valve.

Check Valves

- Neither ¼ turn or multi-turn valves.
- Simply swing open or closed to allow flow in one direction only.
- Flow holds the valve open. If the flow tries to reverse direction, it forces the valve closed.
- Types include: swing, lift, and ball check valves.
- Found mostly at metering or city gate stations.

Regulators

What is a Regulator?

- A regulator is a valve that reduces the input pressure of a fluid or gas to a desired value at its output.
- Regulator types commonly used in gas pressure reduction include:

- Self Operated
- Pilot Operated
- Ball Valve

Regulator Types – Self Operated

- Self-Operated regulators apply the measured pressure force directly to the loading element without an intermediate device (pilot).
- Simple design, needs only one control line connection or can measure outlet pressure internally.
- Loading element will always try to open the regulator.
- Typically utilized in relatively small volume district regulator stations (1/2" – 2") and low flows.

Regulator Types – Self Operated

Regulator Types – Pilot Operated

- A pilot operated regulator utilizes a pilot which senses the measured pressure. The pilot amplifies the change in the measured pressure into a larger change in the loading pressure in order to operate the restricting element.
- A pilot is a small, highly accurate self operating regulator.

Regulator Types – Pilot Operated

- Three types of pilot operated regulators.
 - (1) Loading (to open)
 - (2) Unloading (to open)
 - (3) Ball valve regulators (spring open, closed, last position).
- More accurate control of set point and higher capacities than self operating regulators. Can also consist of a control valve with a controller or pilot.

Load to Open – Mooney Flowmax

INLET PRESSURE
OUTLET PRESSURE
LOADING PRESSURE
ATMOSPHERIC PRESSURE

Unload to Open – Mooney 900 TE

Double Acting – Ball Valve Regulator

Over Pressure protection

Relief Valve

Slam Shut Valve

Monitor Regulator

Relief Valve

- Located downstream of a regulator facility.
- Blows gas to the atmosphere instead of over-pressurizing the system.
- Monitors pressure upstream.
- Indication of blowing relief valve is pressure rising, then going down quickly, then rising again.

Slam Shut Valve

- Located downstream of a regulator station.
- Monitors downstream pressure.
- Slams shut if downstream pressure increases above set pressure.
- Must be manually reset.
- Indication of a slam shut being tripped is the outlet pressures rises quickly then flow stops.

Monitor Regulator

- Can be upstream or downstream of control regulator.
- Set at a higher pressure than the control regulator.
- Will take control when pressure reaches monitor set point.
- Setting monitor pressure to close to controller setting will cause cycling.

Over Pressure Protection Settings

Maximum pressure settings (49 CFR 192.201)

- MAOP 60 PSIG or greater: MAOP + 10% or the pressure that produces a hoop stress of 75% SMYS, whichever is lower
- MAOP >12 PSIG but <60 PSIG: MAOP + 6 PSIG
- MAOP < 12 PSIG: MAOP + 50%

Flow vs. Pressure Control

Gas Heating Principles

- Large pressure reductions at gate stations require gas to be heated.
- "Cold Gas" can potentially cause freezing of regulator systems and other underground systems (I.E. water, steam).
- 7 degrees of temperature loss for every 100 pounds of pressure cut.

Gate Station Gas Heating System

Indirect Heating System

Staged boilers

Heat Exchanger

Direct Heating System

Water bath

Vacuum steam

Gas System Remote Monitoring & Control

Supervisory Control And Data Acquisition - SCADA

- 24x7 remote control and monitoring of the gas system.
- Safety and security of gate stations and district regulators.
- Emergency shut down of sections of the gas system.
- Balancing of gas pipeline nominations.

Basic SCADA System Operation

Remote Transmitting Unit (RTU)

Abnormal Operating Conditions (AOCs) MULCARE Pipaline Solutions

Recognizing Control Regulator Failure

- Pressure does not remain constant (cycling).
 - Relief valve blowing or monitor and controller regulators set too close together.
- Pressure goes higher than controller set point.
 - Failed control regulator.
- Pressure goes down to secondary run setting or line pressure drops at single run facility.
 - Possible broken main.

Recognizing/Responding to Increased Flow Rate

- Flow rate increases and pressure decreases.
 - Possible line break.
- Flow rate and pressure increase to monitor setting.
 - Control regulator failure.

Recognizing Active Overpressure Protection Devices

- Pressure cycles above and below relief valve setting.
 - Relief valve has been activated.
- Pressures rises above relief set point then gas flow stops immediately.
 - Slam shut valve has activated.

Questions?

